ETA Common Formulas

Conversion Factors:
\[\pi (\text{Pi}) = 3.14 \]
\[2\pi = 6.28 \]
\[\pi^2 = 9.87 \]
\[\log\pi = 0.497 \]
1 meter = 3.28 feet
1 inch = 2.54 centimeters
1 radian = 57.3°

Resonant frequency formulas
Where \(f \) is in kHz, \(L \) is in microhenries, \(C \) is in microfarads
\[f_{\text{Hz}} = 159.2 \frac{1}{\sqrt{LC}} \]
\[f_{\text{ResoHz}} = \frac{1}{2\pi \sqrt{LC}} \]

Frequency & Wavelength formulas
\[f = \text{frequency}, \quad \lambda = \text{wavelength} \]
0.5\(\lambda \) = 180° = half wave
0.25\(\lambda \) = 90° = quarter wave
\[f_{\text{Hz}} = (3 \times 10^8) + \lambda \text{meters} \quad \text{or} \quad f_{\text{MHz}} = 984 + \lambda \text{feet} \]
\[\lambda \text{meters} = (3 \times 10^8) + f_{\text{Hz}} \quad \text{or} \quad \lambda \text{feet} = 984 + f_{\text{MHz}} \]

Sine wave conversion
(RMS = root mean square).
Effective value (RMS) = 0.707 × Peak Value = 1.11 × Average Value
Peak Value = 1.414 × Effective Value (RMS) = 1.57 × Average Value
Average Value = 0.637 × Peak Value = 0.9 × Effective Value (RMS)
Identify: Waveform, Peak (amplitude), RMS, 1 cycle over time period (frequency), Peak to peak, and practical average.

Ohm’s Law

\[P = I \times E \]
\[R = \frac{E}{I} \]
\[Z = \sqrt{R^2 + \left(\frac{E}{I}\right)^2} \]

Time constants
\(T \) (Greek Tau), \(R \) (ohms), \(C \) (microfarads), \(L \) (microhenries)
\[\text{RL circuit: } T = L \times R \]
\[\text{RC circuit: } T = C \times R \]

Gain dB = 10 log \((P_1 / P_2)\)
Gain dB = 20 log \((V_{out} / V_{in})\)

Voltage gain in decibels
\[V_{out} = E - V_{\text{terminal}} \]
\[W = \frac{1}{2} C \times V^2 \]

Energy Storage in a Capacitor
where \(W \) is the energy (in Joules), \(C \) is the capacitance (in farads), and \(V \) is the potential difference (in volts).

How to Compute Charge or Quantity of Electricity
where \(Q \) is the charge (in coulombs), \(C \) is the capacitance (in farads), and \(V \) is the potential difference (in volts).
\[Q = C \times V \]

Capacitors connected in parallel
\[C = C_1 + C_2 + C_3 + \ldots \]

Capacitors connected in series
\[1 + C = (1 + C_1) + (1 + C_2) + (1 + C_3) + \ldots \]

Reactance of capacitors
\[X_C = 1 + (2 \times \pi \times f \times C) \]

Impedance Formulas for a Series Circuit
\[Z = \sqrt{R^2 + (X_L - X_C)^2} \]

Impedance Formulas for \(R \) and \(X \) in Parallel
\[Z = \sqrt{R^2 + X^2} \]

Battery internal resistance
\[V_{out} = E - V_{\text{terminal}} \]