

SREB

Aerospace Engineering -Course 3

Code: 9032

<u>AEROSPACE ENGINEERING – COURSE 3</u>

Test Code: 9032 Version: 01

Specific Competencies and Skills Tested in this Assessment:

Information about the AC course standards can be found in the front of the AC course teacher guide.

CTE

1C Conduct Model CTE 2. Data Collection CTE 2A Create Testing CTE 3B Analyze Flight CTE **3G Analyze Aircraft CTE** 4C Select and Defend Materials CTE 5A Using Navigation Tools CTE 7A Predict and Analyze CTE 7C Design Practical CTE 7F Design and Create CTE 7H Design Environments CTE 8 Remote Vehicle Systems CTE 9E Design and Create CTE Create Programming CTE 10E Critique Methods CTE 10F Use Industry Standard CTE

Literacy

RST 11-12.1 Literacy 11-12.1 Literacy 11.12.2 Literacy RST 11.12.4 Literacy RST.11-12.10 Literacy

Aerospace Engineering – Course 3 (continued)

<u>Math</u>

A.CED.2 Math F.IF.7 Math G.SRT.8 Math G.SRT.11 Math S.ID.6 Math

Science

HS-ETS 1-1 Science HS-ETS 1-2 Design Science HS-ETS 1-3 Evaluate Science HS-ETS 1-4 Science HS-ETS 1-4 Using a Computer Science HS-PS 2-6 Communicate Science

Aerospace Engineering – Course 3 (continued)

Written Assessment:

Administration Time: unlimited Number of Questions: 51

Areas covered:

53%	CTE
22%	Literacy
10%	Math
16%	Science

Sample Questions:

Why are details so important in documenting your model prototypes?

- A. Cost is the most important constraint
- B. You should clearly explain why carbon fiber materials have much higher strength in some dimensions
- C. You should explain why epoxy resins are used to create carbon fiber composites
- D. You should explain why aluminum is inferior to carbon fiber

Letting P(8, 4, 5) and Q(-2, 6, 1) be vectors, what is the length and magnitude of the resultant vector P + Q?

- A. P + Q = (10, 10, 6); Magnitude = $\sqrt{26}$
- B. P + Q = (10, 10, 6); Magnitude = $2\sqrt{59}$
- C. P + Q = (6, 10, 6); Magnitude = $2\sqrt{43}$
- D. P + Q = (6, 10, 6); Magnitude = $\sqrt{22}$

Why should you use a simulator to experiment with the design of an aircraft?

- A. Simulation allows designers to explore a wide variety of designs quickly without the time and expense of building physical prototypes
- B. Simulation provides designers a way of showing customers what the end product may look like
- C. Simulation simplifies the mathematics behind the interaction of systems and components
- D. Simulation can identify potential failure modes